PCIE-1812

250 kS/s, 16-Bit, 8-Ch, Simultaneous **Sampling Multifunction PCI Express DAQ** Card

Features

- 8 differential simultaneous sampling analog inputs, up to 250 kS/s, 16-bit resolution
- 2 analog outputs, up to 3 MS/s, 16-bit resolution
- 2 analog triggers and 2 digital triggers for analog I/O
- 32 programmable DI/Os with interrupt functions
- Four 32-bit programmable counters/ timers/ encoders
- Board ID switch

FCC CE ROHS

Introduction

PCIE-1812 is a simultaneous-sampling multifunction DAQ card designed to meet a wide range of application requirements. PCIE-1812 supports simultaneous sampling of 8 analog input channels with differential input configuration for maximum noise elimination. In addition to providing 2-c, 16-bit analog outputs with waveform generation capabilities, PCIE-1812 supports simultaneous waveform generation and analog input functions.

Specifications

Analog Input

Channels

Mode Differential input Resolution 16 bits Sample Rate 250 kS/s max.

Input Impedance $1 \, \text{G}\Omega$

Sampling Mode Software and external clock Input Range Software programmable

Accuracy

Range	±10 V	±5 V	±2.5 V	±1.25 V	±0.625 V
Accuracy	±0.01%	±0.01%	±0 01%	£0.01%	±0.01%
Range		0 ~ 10 V	0~5V	0 ~ 2.5 V	0 ~ 1.25 V
Accuracy		±0.01%	±0.01%	±0.01%	±0.01%

Analog Output

Channels Resolution 16 bits **Output Rate** 3 M max.

Outnut Ranne Software programmable

p		Commercial Programment	
	Internal Deference	Unipolar	0 ~ 5 V, 0 ~ 10 V
internal Refere	Internal Reference	Bipolar	-5 V ~ 5 V, -10 V ~ 10 V
External Reference			$0 \sim +x \vee @ -x \vee (-10 \le x \le 10)$

Slew Rate 20 V/µs **Driving Capability** ±20 mA max

Operation Mode Static update, Buffered (Waveform generation)

Accuracy

Analog Trigger

Channels Resolution 16 bits Input Range -10 ~ 10 V

Hysteresis Yes. Hysteresis range is configurable Trigger Edge Rising edge or falling edge, selected by software

Digital Trigger

Channels

 Input Voltage Logic 0: 1.5 V max. Logic 1: 3.5V min.

 Trigger Edge Rising edge or falling edge, selected by software

Pignal I/O

Channels 32 (shared) **Input Voltage** Logic 0: 1.5 V max. Logic 1: 3.5 V min.

Output Voltage Low 0.5 V max. @ 20 mA sink

High 4.5 V min. @ 20 mA source/5.2 V max.

Counter/ Timer/ Encoder

Channels Resolution 32 bits Compatibility 5 V/TTL Max. Input Frequency 10 MHz

Counter/Timer Functions Frequency measurement, pulse width measurement, pulse output, PWM output

 Encoder Functions Quadrature (X1, X2, X4), dual pulse (CW/CCW), signed pulse (OUT/DIR)

General

Form Factor PCI Express x1

I/O Connector 100-pin SCSI female ribbon-type connector Dimensions (L x W) 175 x 100 x 18 mm³ (6.9 x 3.9 x 0.7 in.³) **Operating Temperature** $0 \sim 60 \,^{\circ}\text{C} \, (32 \sim 140 \,^{\circ}\text{F}) \, (\text{refer to IEC } 68-2-1, 2)$

Storage Temperature -40 ~ 70 °C (-40 ~ 158 °F)

Storage Humidity 5 ~ 95% RH non-condensing (refer to IEC 68-2-3)

Board ID

Ordering Information

 PCIE-1812-B 250 kS/s, 16-bit, 8-ch simultaneous sampling multifunction card

Accessories

PCLD-8811-AE

PCL-101100R-1E 100-pin SCSI shielded cable, female to male, 1 m PCL-101100R-2E 100-pin SCSI shielded cable, female to male, 2 m

ADAM-39100-BE 100-pin DIN rail SCSI wiring board PCLD-8813-AE 6Advanced Signal Conditioning Board for

PCIE-1812/PCIE-1813 Low-Pass Active Filter Boar

1700030423-01 10-pin flat cable for MDSI synchronization, 10 cm